Home > Analysis > Integrals

Integrals


a) Let A=(a_{ij})_{i,j=1}^n be a real matrix. Show that

\displaystyle \int_{|x|<1} (x,Ax) dx = \frac{\omega_n}{n(n+2)} tr(A), where (\cdot ,\cdot) is the usual dot product and \omega_n is the area  of the unit sphere.

b) Show that for all u \in C_0^2 (\Bbb{R}^n) we have

\displaystyle \int_{\Bbb{R}^n} (\Delta u)^2 dx =\sum_{i,j=1}^n \int_{\Bbb{R}^n} |D_{ij}u|^2 dx.

PHD Iowa (6101)

Advertisements
Categories: Analysis Tags: ,
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: