Home > Analysis, Inequalities, Problem Solving > Traian Lalescu contest 2009 Problem 3

Traian Lalescu contest 2009 Problem 3


Suppose n \in \Bbb{N}, \ n \geq 2 and x_1,...,x_n >0,\ x_1+x_2+...+x_n=1.Prove that

\displaystyle \sum_{k=1}^n \frac{x_k}{1+k(x_1^2+x_2^2+...+x_k^2)}< \frac{\pi}{4}, and the constant \pi/4 is the best possible.

Traian Lalescu contest 2009

Advertisements
  1. Ragib
    May 11, 2011 at 2:53 pm

    I don’t have a solution for the inequality, but if one can show it then we can conclude \pi/4 is the optimal constant by picking x_1 = x_2 = x_3 = ... = x_n = 1/n, which makes the sum a Riemann integral for \int_0^1 1/(1+x^2) dx = \pi/4, so we can make the sum arbitrarily close to \pi/4 by picking sufficiently large n.

    • May 11, 2011 at 6:29 pm

      Thank you for your remark. If you noticed that, you are very close to solving the inequality. The idea is to apply Cauchy Schwarz and then see that the result is indeed a Riemann sum for the given integral, which is smaller than the integral itself.

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: