Home > Olympiad > IMC 2011 Day 2 Problem 3

IMC 2011 Day 2 Problem 3


Calculate \displaystyle \sum_{n=1}^\infty \ln \left(1+\frac{1}{n}\right)\ln \left( 1+\frac{1}{2n}\right)\ln\left( 1+\frac{1}{2n+1}\right).

Advertisements
Categories: Olympiad Tags:
  1. August 12, 2011 at 5:03 pm

    Hi. The problem statement is actually: Determine the value of \sum_{n=1}^\infty \ln \left(1+\frac{1}{n}\right) \ln \left(1+\frac{1}{2n}\right) \ln \left(1+\frac{1}{2n+1}\right). *hope that the latex works*

    Cheers 🙂

    • August 12, 2011 at 5:13 pm

      Yes. Sorry for the confusion. That is the reason why it appeared wrong on other forums. I am sorry 🙂

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: