Home > Number theory, Olympiad > IMC 2013 Problem 7

IMC 2013 Problem 7


Problem 7. Let {p} and {q} be relatively prime positive integers. Prove that

\displaystyle \sum_{k=0}^{pq-1} (-1)^{\lfloor \frac{k}{p}\rfloor +\lfloor \frac{k}{q} \rfloor}=\begin{cases} 0 & \text{if }pq \text{ is even}\\ 1 & \text{if } pq \text{ is odd} \end{cases}

Advertisements
Categories: Number theory, Olympiad Tags: ,
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: