Home > Combinatorics, IMO, Olympiad > IMO 2014 Problem 5

IMO 2014 Problem 5


For every positive integer {n}, Cape Town Bank issues some coins that has {\frac{1}{n}} value. Let a collection of such finite coins (coins does not neccesarily have different values) which sum of their value is less than {99+\frac{1}{2}}. Prove that we can divide the collection into at most 100 groups such that sum of all coins’ value does not exceed 1.

IMO 2014 Problem 5 (Day 2)

Advertisements
Categories: Combinatorics, IMO, Olympiad Tags: ,
  1. No comments yet.
  1. July 10, 2014 at 11:45 am

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: