Home > Olympiad, Uncategorized > IMC 2016 Problems – Day 2

## IMC 2016 Problems – Day 2

Problem 6. Let ${(x_1,x_2,...)}$ be a sequence of positive real numbers satisfying ${\displaystyle \sum_{n=1}^\infty \frac{x_n}{2n-1}=1}$. Prove that

$\displaystyle \sum_{k=1}^\infty \sum_{n=1}^k \frac{x_n}{k^2} \leq 2.$

Problem 7. Today, Ivan the Confessor prefers continuous functions ${f:[0,1]\rightarrow \Bbb{R}}$ satisfying ${f(x)+f(y) \geq |x-y|}$ for all ${x,y \in [0,1]}$. Fin the minimum of ${\int_0^1 f}$ over all preferred functions.

Problem 8. Let ${n}$ be a positive integer and denote by ${\Bbb{Z}_n}$ the ring of integers modulo ${n}$. Suppose that there exists a function ${f:\Bbb{Z}_n \rightarrow \Bbb{Z}_n}$ satisfying the following three properties:

• (i) ${f(x) \neq x}$,
• (ii) ${f(f(x))=x}$,
• (iii) ${f(f(f(x+1)+1)+1) = x}$ for all ${x \in \Bbb{Z}_n}$.

Prove that ${n \equiv 2}$ modulo ${4}$.

Problem 9. Let ${k}$ be a positive integer. For each nonnegative integer ${n}$ let ${f(n)}$ be the number of solutions ${(x_1,...,x_k) \in \Bbb{Z}^k}$ of the inequality ${|x_1|+...+|x_k| \leq n}$. Prove that for every ${n \geq 1}$ we have ${f(n-1)f(n+1) \leq f(n)^2}$.

Problem 10. Let ${A}$ be a ${n \times n}$ complex matrix whose eigenvalues have absolute value at most ${1}$. Prove that

$\displaystyle \|A^n\| \leq \frac{n}{\ln 2} \|A\|^{n-1}.$

(Here ${\|B\| = \sup_{\|x\|\leq 1} \|Bx\|}$ for every ${n \times n}$ matrix ${B}$ and ${\|x\| = \sqrt{\sum_{i=1}^n |x_i|^2 }}$ for every complex vector ${x \in \Bbb{C}^n}$.)