## Project Euler 607

If you like solving Project Euler problems you should try Problem number 607. It’s not very hard, as it can be reduced to a small optimization problem. The idea is to find a path which minimizes time, knowing that certain regions correspond to different speeds. A precise statement of the result can be found on the official page. Here’s an image of the path which realizes the shortest time:

## Balkan Mathematical Olympiad 2017 – Problems

**Problem 1.** Find all ordered pairs of positive integers such that:

**Problem 2.** Consider an acute-angled triangle with and let be its circumscribed circle. Let and be the tangents to the circle at points and , respectively, and let be their intersection. The straight line passing through the point and parallel to intersects in point . The straight line passing through the point and parallel to intersects in point . The circumcircle of the triangle intersects in , where is located between and . The circumcircle of the triangle intersects the line (or its extension) in , where is located between and .

Prove that , , and are concurrent.

**Problem 3.** Let denote the set of positive integers. Find all functions such that

for all

**Problem 4.** On a circular table sit students. First, each student has just one candy. At each step, each student chooses one of the following actions:

- (A) Gives a candy to the student sitting on his left or to the student sitting on his right.
- (B) Separates all its candies in two, possibly empty, sets and gives one set to the student sitting on his left and the other to the student sitting on his right.

At each step, students perform the actions they have chosen at the same time. A distribution of candy is called legitimate if it can occur after a finite number of steps. Find the number of legitimate distributions.

(Two distributions are different if there is a student who has a different number of candy in each of these distributions.)

Source: AoPS

## Missing digit – short puzzle

The number has digits, all different; which digit is missing?

*Mathematical Mind-Benders, Peter Winkler*

## Project Euler tips

A few years back I started working on Project Euler problems mainly because it was fun from a mathematical point of view, but also to improve my programming skills. After solving about 120 problems I seem to have hit a wall, because the numbers involved in some of the problems were just too big for my simple brute-force algorithms.

Recently, I decided to try and see if I can do some more of these problems. I cannot say that I’ve acquired some new techniques between 2012-2016 concerning the mathematics involved in these problems. My research topics are usually quite different and my day to day programming routines are more about constructing new stuff which works fast enough than optimizing actual code. Nevertheless, I have some experience coding in Matlab, and I realized that nested loops are to be avoided. Vectorizing the code can speed up things 100 fold.

So the point of Project Euler tasks is making things go well for large numbers. Normally all problems are tested and should run within a minute on a regular machine. This brings us to choosing the right algorithms, the right simplifications and finding the complexity of the algorithms involved.

## Project Euler Problem 285

Another quite nice problem from Project Euler is number 285. The result of the problem depends on the computation of a certain probability, which in turn is related to the computation of a certain area. Below is an illustration of the computation for k equal to 10.

To save you some time, here’s a picture of the case k=1 which I ignored and spent quite a lot of time debugging… Plus, it only affects the last three digits or so after the decimal point…

Here’s a Matlab code which can construct the pictures above and can compute the result for low cases. To solve the problem, you should compute explicitly all these areas.

function problem285(k) N = 100000; a = rand(1,N); b = rand(1,N); ind = find(abs(sqrt((k*a+1).^2+(k*b+1).^2)-k)<0.5); plot(a(ind),b(ind),'.'); axis equal M = k; pl = 1; for k=1:M if mod(k,100)==0 k end r1 = (k+0.5)/k; r2 = (k-0.5)/k; f1 = @(x) (x<=(-1/k+r1)).*(x>=(-1/k-r1)).*(sqrt(r1^2-(x+1/k).^2)-1/k).*(x>=0).*(x<=1); f1 = @(x) f1(x).*(f1(x)>=0); f2 = @(x) (x<=(-1/k+r2)).*(x>=(-1/k-r2)).*(sqrt(r2^2-(x+1/k).^2)-1/k).*(x>=0).*(x<=1); f2 = @(x) f2(x).*(f2(x)>=0); if k == pl thetas = linspace(0,pi/2,200); hold on plot(-1/k+r1*cos(thetas),-1/k+r1*sin(thetas),'r','LineWidth',2); plot(-1/k+r2*cos(thetas),-1/k+r2*sin(thetas),'r','LineWidth',2); plot([0 1 1 0 0],[0 0 1 1 0],'k','LineWidth',3); hold off axis off end A(k) = integral(@(x) f1(x)-f2(x),0,1); end xs = xlim; ys = ylim; w = 0.01; axis([xs(1)-w xs(2)+w ys(1)-w ys(2)+w]); sum((1:k).*A)

## Fireworks – Project Euler 317

You can read the text of the problem here. The idea is that we have an explosion at a given height in a uniform gravitational field (no friction/wind). Supposing that all particles go outwards from the explosion point with a constant initial speed, what is the shape of the body formed by these particles? A hint is given in the picture below with a nice Matlab simulation.

Now what happens if we add a little bit of wind? Here’s the perturbation obtained when adding a 10m/s uniform wind speed vs the initial configuration. Something like this would be a lot more challenging 🙂