### Archive

Posts Tagged ‘IMC’

## IMC 2017 – Day 2 – Problems

Problem 6. Let ${f: [0,\infty) \rightarrow \Bbb{R}}$ be a continuous function such that ${\lim_{x \rightarrow \infty}f(x) = L}$ exists (finite or infinite).

Prove that

$\displaystyle \lim_{n \rightarrow \infty} \int_0^1 f(nx) dx = L.$

Problem 7. Let ${p(x)}$ be a nonconstant polynomial with real coefficients. For every positive integer ${n}$ let

$\displaystyle q_n(x) = (x+1)^n p(x)+x^n p(x+1).$

Prove that there are only finitely many numbers ${n}$ such that all roots of ${q_n(x)}$ are real.

Problem 8. Define the sequence ${A_1,A_2,...}$ of matrices by the following recurrence

$\displaystyle A_1 = \begin{pmatrix} 0& 1 \\ 1& 0 \end{pmatrix}, \ A_{n+1} = \begin{pmatrix} A_n & I_{2^n} \\ I_{2^n} & A_n \end{pmatrix} \ \ (n=1,2,...)$

where ${I_m}$ is the ${m\times m}$ identity matrix.

Prove that ${A_n}$ has ${n+1}$ distinct integer eigenvalues ${\lambda_0<\lambda_1<...<\lambda_n}$ with multiplicities ${{n \choose 0},\ {n\choose 1},...,{n \choose n}}$, respectively.

Problem 9. Define the sequence ${f_1,f_2,... : [0,1) \rightarrow \Bbb{R}}$ of continuously differentiable functions by the following recurrence

$\displaystyle f_1 = 1; f'_{n+1} = f_nf_{n+1} \text{ on } (0,1) \text{ and } f_{n+1}(0)=1.$

Show that ${\lim_{n\rightarrow \infty}f_n(x)}$ exists for every ${x \in [0,1)}$ and determine the limit function.

Problem 10. Let ${K}$ be an equilateral triangle in the plane. Prove that for every ${p>0}$ there exists an ${\varepsilon >0}$ with the following property: If ${n}$ is a positive integer and ${T_1,...,T_n}$ are non-overlapping triangles inside ${K}$ such that each of them is homothetic to ${K}$ with a negative ratio and

$\displaystyle \sum_{\ell =1}^n \text{area}(T_\ell) > \text{area} (K)-\varepsilon,$

then

$\displaystyle \sum_{\ell =1}^n \text{perimeter} (T_\ell) > p.$

## IMC 2016 – Day 2 – Problem 8

Problem 8. Let ${n}$ be a positive integer and denote by ${\Bbb{Z}_n}$ the ring of integers modulo ${n}$. Suppose that there exists a function ${f:\Bbb{Z}_n \rightarrow \Bbb{Z}_n}$ satisfying the following three properties:

• (i) ${f(x) \neq x}$,
• (ii) ${x = f(f(x))}$,
• (iii) ${f(f(f(x+1)+1)+1) = x}$ for all ${x \in \Bbb{Z}_n}$.

Prove that ${n \equiv 2}$ modulo ${4}$.

## IMC 2016 – Day 2 – Problem 7

Problem 7. Today, Ivan the Confessor prefers continuous functions ${f:[0,1]\rightarrow \Bbb{R}}$ satisfying ${f(x)+f(y) \geq |x-y|}$ for all ${x,y \in [0,1]}$. Fin the minimum of ${\int_0^1 f}$ over all preferred functions.

## IMC 2016 – Day 2 – Problem 6

July 28, 2016 1 comment

Problem 6. Let ${(x_1,x_2,...)}$ be a sequence of positive real numbers satisfying ${\displaystyle \sum_{n=1}^\infty \frac{x_n}{2n-1}=1}$. Prove that

$\displaystyle \sum_{k=1}^\infty \sum_{n=1}^k \frac{x_n}{k^2} \leq 2.$

## IMC 2016 Problems – Day 2

Problem 6. Let ${(x_1,x_2,...)}$ be a sequence of positive real numbers satisfying ${\displaystyle \sum_{n=1}^\infty \frac{x_n}{2n-1}=1}$. Prove that

$\displaystyle \sum_{k=1}^\infty \sum_{n=1}^k \frac{x_n}{k^2} \leq 2.$

Problem 7. Today, Ivan the Confessor prefers continuous functions ${f:[0,1]\rightarrow \Bbb{R}}$ satisfying ${f(x)+f(y) \geq |x-y|}$ for all ${x,y \in [0,1]}$. Fin the minimum of ${\int_0^1 f}$ over all preferred functions.

Problem 8. Let ${n}$ be a positive integer and denote by ${\Bbb{Z}_n}$ the ring of integers modulo ${n}$. Suppose that there exists a function ${f:\Bbb{Z}_n \rightarrow \Bbb{Z}_n}$ satisfying the following three properties:

• (i) ${f(x) \neq x}$,
• (ii) ${f(f(x))=x}$,
• (iii) ${f(f(f(x+1)+1)+1) = x}$ for all ${x \in \Bbb{Z}_n}$.

Prove that ${n \equiv 2}$ modulo ${4}$.

Problem 9. Let ${k}$ be a positive integer. For each nonnegative integer ${n}$ let ${f(n)}$ be the number of solutions ${(x_1,...,x_k) \in \Bbb{Z}^k}$ of the inequality ${|x_1|+...+|x_k| \leq n}$. Prove that for every ${n \geq 1}$ we have ${f(n-1)f(n+1) \leq f(n)^2}$.

Problem 10. Let ${A}$ be a ${n \times n}$ complex matrix whose eigenvalues have absolute value at most ${1}$. Prove that

$\displaystyle \|A^n\| \leq \frac{n}{\ln 2} \|A\|^{n-1}.$

(Here ${\|B\| = \sup_{\|x\|\leq 1} \|Bx\|}$ for every ${n \times n}$ matrix ${B}$ and ${\|x\| = \sqrt{\sum_{i=1}^n |x_i|^2 }}$ for every complex vector ${x \in \Bbb{C}^n}$.)

Categories: Olympiad, Uncategorized Tags: , ,

## IMC 2016 – Day 1 – Problem 2

Problem 2. Let ${k}$ and ${n}$ be positive integers. A sequence ${(A_1,...,A_k)}$ of ${n\times n}$ matrices is preferred by Ivan the Confessor if ${A_i^2 \neq 0}$ for ${1\leq i \leq k}$, but ${A_iA_j = 0}$ for ${1\leq i,j \leq k}$ with ${i \neq j}$. Show that if ${k \leq n}$ in al preferred sequences and give an example of a preferred sequence with ${k=n}$ for each ${n}$.
For every positive integer ${n}$, denote by ${D_n}$ the number of permutations ${(x_1,...,x_n)}$ of ${(1,2,...,n)}$ such that ${x_j \neq j}$ for every ${1 \leq j \leq n}$. For ${1 \leq k \leq \frac{n}{2}}$, denote by ${\Delta(n,k)}$ the number of permutations ${(x_1,...,x_n)}$ of ${(1,2,...,n)}$ such that ${x_i = k+i}$ for every ${1 \leq i \leq k}$ and ${x_j \neq j}$ for every ${1 \leq j \leq n}$. Prove that
$\displaystyle \Delta(n,k) = \sum_{i = 0}^{k-1} {k-1 \choose i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}.$