## IMC 2017 – Day 2 – Problems

**Problem 6.** Let be a continuous function such that exists (finite or infinite).

Prove that

**Problem 7.** Let be a nonconstant polynomial with real coefficients. For every positive integer let

Prove that there are only finitely many numbers such that all roots of are real.

**Problem 8.** Define the sequence of matrices by the following recurrence

where is the identity matrix.

Prove that has distinct integer eigenvalues with multiplicities , respectively.

**Problem 9.** Define the sequence of continuously differentiable functions by the following recurrence

Show that exists for every and determine the limit function.

**Problem 10.** Let be an equilateral triangle in the plane. Prove that for every there exists an with the following property: If is a positive integer and are non-overlapping triangles inside such that each of them is homothetic to with a negative ratio and

then

## IMC 2016 – Day 2 – Problem 8

**Problem 8.** Let be a positive integer and denote by the ring of integers modulo . Suppose that there exists a function satisfying the following three properties:

- (i) ,
- (ii) ,
- (iii) for all .

Prove that modulo .

## IMC 2016 – Day 2 – Problem 7

**Problem 7.** Today, Ivan the Confessor prefers continuous functions satisfying for all . Fin the minimum of over all preferred functions.

## IMC 2016 – Day 2 – Problem 6

**Problem 6.** Let be a sequence of positive real numbers satisfying . Prove that

## IMC 2016 Problems – Day 2

**Problem 6.** Let be a sequence of positive real numbers satisfying . Prove that

**Problem 7.** Today, Ivan the Confessor prefers continuous functions satisfying for all . Fin the minimum of over all preferred functions.

**Problem 8.** Let be a positive integer and denote by the ring of integers modulo . Suppose that there exists a function satisfying the following three properties:

- (i) ,
- (ii) ,
- (iii) for all .

Prove that modulo .

**Problem 9.** Let be a positive integer. For each nonnegative integer let be the number of solutions of the inequality . Prove that for every we have .

**Problem 10.** Let be a complex matrix whose eigenvalues have absolute value at most . Prove that

(Here for every matrix and for every complex vector .)

Official source and more infos here.

## IMC 2016 – Day 1 – Problem 2

**Problem 2.** Let and be positive integers. A sequence of matrices is *preferred* by Ivan the Confessor if for , but for with . Show that if in al preferred sequences and give an example of a preferred sequence with for each .

## IMC 2014 Day 2 Problem 5

For every positive integer , denote by the number of permutations of such that for every . For , denote by the number of permutations of such that for every and for every . Prove that

**IMC 2014 Day 2 Problem 5**