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Abstract

This paper presents in the beginning the existence of the optimal form
for the isoperimetric inequality. Based on the existence of the optimal
form, two simple, elementary proofs are given. Some simple applications
of the isoperimetric inequality are presented
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1 Introduction

The isoperimetric problem is one of the simplest shape optimization problems.
It is known from the antiquity that the largest area that can be enclosed by a
fixed length wire should be the one of the circle, but rigorous proofs were only
given in the 19th century. It can be rephrased in different equivalent ways:

• Find the greatest area which can be enclosed by a wire of length L, and
the shape that realizes this maximum;

• Find the shortest length of a wire that can enclose a fixed area A, and the
shape that realizes this minimum;

• For a plane figuren F with smooth boundary, if we denote its area by A
and its perimeter by L we have the following inequality:

4πA ≤ L2.

There are numerous ways to prove this inequality:

• four hinge proof;

• Hurwitz’s pfoof using Wirtinger’s inequality;

• Brunn Minkowski’s Inequality;

• Hadwiger’s proof using Steiner’s inequality;

• parametrization proof;
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Some of these proofs can only be used in the two dimensional case, and
some of them assume the existence of the optimal form apriori. I will present
an existence argument for the general N -dimensional case, and then prove in a
very simple way the isoperimetric inequality in the two dimensional case. A few
applications are presented in the end.

2 Isoperimetric Inequalities

2.1 Existence of the optimal form

In what follows, we denote by |Ω| the Lebesgue measure of the measurable set
Ω.

We begin by defining the perimeter of a measurable set in RN . For an
open set D ⊂ RN , we denote D(D;RN ) the space of functions defined on D
with values in RN which are C∞ with compact support. This means that
φ = (φ1, ..., φN ) ∈ D(D;RN ) if each φi is a real function with compact support
in D. We endow D(D;RN ) with the norm

‖φ‖∞ := sup
x∈D

[(
N∑
i=1

φi(x)2

)]1/2

= sup
x∈D
|φ(x)|.

Now we can define the perimeter and relative perimeter as follows:
Definition 1. Let Ω be a measurable set in D. We call the perimeter of Ω

relative to D (or simply the perimeter if D = RN ) the number

PD(Ω) = sup{
∫

Ω

div(φ)dx; φ ∈ D(D;RN ), ‖φ‖∞ ≤ 1}.

If D = RN , we denote PRN (Ω) = P (Ω).
This definition extends the case when Ω has C1 boundary, in fact, we have

the following remark.
Remark 1. If Ω is a bounded open set with C1 boundary, then PD(Ω) =∫

∂Ω∩D dσ (where dσ is the surface element on ∂Ω).
The proof of this is not trivial, and can be found in [2].
We want to obtain some compacity result for the perimeter, which would

enable us to prove the existence theorem. For this, we express
∫

Ω
div(φ)dx in

the following manner:∫
Ω

div(φ)dx =

∫
D

χΩ

(
N∑
i=1

∂φi
∂xi

)
dx = 〈χΩ,

N∑
i=1

∂φi
∂xi
〉D′×D

= −
N∑
i=1

〈∂χΩ

∂xi
, φi〉D′×D = −〈∇χΩ, φ〉D′×D,

where D′ = D′(D;RN ) is the space of distributions (T1, ..., TN ) with Ti ∈ D′(D).
This enables us to give another definition of the perimeter in terms of Radon
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measures, recalling that the 1-norm is equal, using duality, to

‖f‖1 = sup{
∫
D

f(x) · φ(x)dx;φ ∈ D(D;RN ), ‖φ‖∞ ≤ 1}.

Proposition 1. Let µ = (µ1, ..., µN ) ∈ D′(D;RN ). Then µ is a Radon
measure of finite total mass on RN if and only if

‖µ‖1 = sup{〈µ, φ〉D′×D; φ ∈ D(D;RN ), ‖φ‖∞ ≤ 1} <∞.

For a proof see [2], Prop 2.3.4.
As a consequence of the above, we have that goven Ω ⊂ D measurable

PD(Ω) <∞⇔ ∇χΩ is a measure of finite total mass,

and
PD(Ω) = ‖∇χΩ‖1.

Proposition 2. If Ωn and Ω are measurable subsets of RN then:

(i) If χΩn
→ χΩ in L1

loc(D) then
|Ω| ≤ lim inf |Ωn|

PD(Ω) ≤ lim inf PD(Ωn)

(ii) If χΩn → χΩ in L1(D) then
|Ω| = lim inf |Ωn|

PD(Ω) ≤ lim inf PD(Ωn)

Proof. For the volume part, in (i) apply Fatou’s lemma, and in (ii) it is
obvious.

For the perimeter, if φ ∈ D(D;RN ), ‖φ‖∞ ≤ 1, we have∫
Ω

div(φ)dx = lim
n

∫
Ωn

div(φ)dx ≤

lim inf
n

(
sup{

∫
Ωn

div(φ)dx; ‖φ‖∞ ≤ 1}
)

= lim inf
n

PD(Ωn).

To obtain some compacity results, we identify Mb(D), the space of Radon
measures with the dual of C0(D), the space of continuous function which tend to
zero on the boundary of D, each measure defining a functional Iµ : C0 → R by
Iµ(f) =

∫
D
fdµ. The converse is also true by the Riesz representation theorem.

For details see [3], Theorem 6.19. Since the dual of C0(D) is separable, we have
Proposition 3. If µn is a sequenc of Radon measures on D for which

‖µn‖1 ≤ C, then there exists a subsequence µnk
and µ ∈ Mb(D) for which

µnk

∗
⇀ µ for the weak-∗ topology σ(Mb(D), C0(D)).

Proof. We know by the Banach-Alaoglu theorem that the unit ball is com-
pact in the weak-∗ topology. Moreover, since the space is separable, the unit
ball in Mb(D) is metrizable in the weak-∗ topology. Therefore compactness is
equivalent to sequential compactness, and therefore the conclusion follows.

For more details see [1], theorems 3.16,3.28. As a non-trivial consequence
we have
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Theorem 1. If Ωn is a sequence of measurable subsets of an open set
D ⊂ RN , for which we have

|Ωn|+ PD(Ωn) ≤ C, ∀n,

then there exists Ω ⊂ D measurable and a subsequence Ωnk
for which

χΩnk
→ χΩ in L1

loc(D)

and
∇χΩk

∗
⇀ ∇χΩ in σ(Mb(D)N , C0(D)N ).

Moreover, if D has finite measure, then χΩnk
→ χΩ in L1(D).

Proof. See [2] Theorem 2.3.10.
We finally arrived to the point where we can prove the existence of the

optimal form in the isoperimetric problem.
Let D be an open set in RN and V0 ∈ (0, |D|). Consider the following

problems

(A) P (Ω∗) = min{P (Ω) : Ω ∈ D measurable, |Ω| = V0}

(B) PD(Ω∗) = min{PD(Ω) : Ω ∈ D measurable, |Ω| = V0}.

Theorem 2. Suppose that |D| < ∞ and V0 ∈ (0, |D|). Then the problems
(A), (B) have at least one solution.

Proof. First, check that there exists at least one measurable set Ω ⊂ D with
|Ω| = V0. To do this, we see that we can write D as a countable union of balls,
D =

⋃
pBp. For k large enough we will see that the measure of ωk =

⋃
p≤k Bp

has measure greater than V0. By continuity, there exists r ∈ (0,∞) such that
|ωk∩B(0, r)| = V0, and this open set has finite perimeter, because it is obtained
from a finite number of balls.

Consider now a minimising sequence (Ωn) for problem (A). Because P (Ωn) =
‖∇χΩn

‖1 is bounded, by Theorem 1, we can find Ω∗ ⊂ D measurable and a sub-
sequence χΩnk

which converges in L1(D) to χΩ∗ . From Proposition 2 we have
that |Ω∗| = V0 and by lower semicontinuity of the preimeter P (Ω∗) ≤ limP (Ωn).
This means that Ω∗ is an optimal form for the problem (A).

For problem (B) we have the same reasoning, with P (Ωn) replaced by
PD(Ωn). With the same type of reasoning, and the use of Theorem 1 we can
prove that the following dual problems have solutions:

(C) |Ω∗| = max{|Ω| : Ω ⊂ D, P (Ω) = P0}

(D) |Ω∗| = max{|Ω| : Ω ⊂ D, PD(Ω) = P0}

As a consequence of these facts, there is an optimal figure for the isoperi-
metric inequality.
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Figure 1: Optimal figure is convex

2.2 A few elementary proofs of the isoperimetric inequal-
ity

At first, it is clear that the optimal figure is convex, elseway the area can be
increased, preserving perimeter, as in the figure below.

Brahmagupta’s formula. It is known that the area S of the quadrilateral
ABCD of sides a, b, c, d satisfies the formula

16S2 = (a+b+c−d)(a+b−c+d)(a−b+c+d)(−a+b+c+d)−16abcd cos2

(
A+ C

2

)
.

We have the following, well known
Lemma Given a, b, c, d > 0 such that

a < b+ c+ d, b < c+ d+ a, c < a+ b+ d, d < a+ b+ c,

then
(i) there exists a quadrilateral with sides a, b, c, d.
(ii) there exists a cyclic quadrilateral with sides a, b, c, d.
Proof. (i) Suppose a ≤ b ≤ c ≤ d, and denote m = a + b. If m = c + d

then a = b = c = d and the quadrilateral we are seeking can be chosen to be a
square. Else we have m < c+d, c < m+d, d < m+c, and therefore, there exists
a triangle with sides m, c, d. Therefore, we have found a quadrilateral ABCD
for which the smallest sides are aligned. Consider the vertices as hinges and
we can move the middle point of the three collinear points such that there is a
quadrilateral with sides a, b, c, d.

(ii) Again, a constructive proof can be given (see [6]), but there is a quicker
one using continuity. Use point (i) for the existence of a quadrilateral of sides
a = AB, b = BC, c = CD, d = DA. Suppose that a < b < c < d (if two sides
are equal then some trapezoid satisfies our conditions).

Consider the following extremal conditions: (1) sides a, b are aligned; (2)
sides b, c are aligned if b+c < a+d or sides a, d are aligned when a+d ≤ b+c. In
the first case ∠B+∠D > π, and in the second case ∠A+∠C > π ⇔ ∠B+∠D <
π. Therefore, by continuity there exists a position where ∠B + ∠D = π, which
is the desired cyclic quadrilateral.
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Figure 2:

Now returning to the isoperimetric inequality, suppose that the optimal fig-
ure is convex, but not a circle. Then its boundary contains four points which are
not on the same circle A,B,C,D (in this order). Draw the quadrilateral ABCD
and consider the regions outside the quadrilateral rigid and attached to the cor-
responding side as in the figure. The area of ABCD can be increased, preserving
perimeter, by forming one cyclic quadrilateral with sides AB,BC,CD,DA like
in the second part of the lemma. By Brahmagupta’s formula, the neq figure has
an area greater than the initial one, which was optimal. Contradiction.

Right angles. Suppose our optimal figure is convex and not a circle. First,
we can find a chord AB such that AB divides the area and the perimeter in
half. Indeed, it is known that given any direction dθ, θ ∈ [0, π], there exists a
unique line lθ parallel to that direction which cuts the figure into two regions of
equal areas. It is clear that l0 = lπ, and we can consider the continuous function
f : [0, π] → R, f(θ) = left(lθ) − right(lθ), which yields f(0) + f(π) = 0. By
continuity, this function has at least one zero, which means that we have found
a chord AB which cuts the area and perimeter in half.

Pick now a point C on one of the boundary arcs determined by AB, which
can be chosen such that ∠ACB 6= π/2. Again draw triangle ACB, consider the
regions outside the triangle as attached to the sides and the vertices as hinges.
Then it is known that making ∠ACB = π/2 increases area of half of the figure,
preserving perimeter. Taking symmetry over AB we get a new figure with the
same perimeter as the initial figure, but with greater area. Contradiction. This
means that the optimal figure is indeed a circle.

3 Some Applications

1. Maximal area n-gon must be cyclic. An analogue of Lemma 1 can be
proved for arbitrary n-gons. The following conditions are necessary and suficient
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for the existence of a n-gon (even a cyclic one) with side lengths xi, i = 1..n:

n∑
i=1

xi > 2xj , j = 1..n.

Consider an arbitrary n-gon P constructed with sides xi, and consider the
cyclic n-gon C with the same sides xi. Draw the circumcircle of C, and consider
the regions outside the n-gon attached to the sides, and labeled Ri, i = 1..n.
Attach these regions Ri to the corresponding sides of P , and obtain a figure with
the same perimeter as the length of the circumcircle of C. By the isoperimetric
inequality we have

Area(P ) +

n∑
i=1

Area(Ri) ≤ Area(C) +

n∑
i=1

Area(Ri),

which simply means that Area(P ) ≤ Area(C). Therefore, the cyclic n-gon has
the largest area.

2. Romanian TST 2005 Suppose we have a polygon with the property
that the distance between any two vertices is smaller than one. Prove that the
area of the polygon is smaller than π/4, and this is the best possible constant.

In the contest, the constant given was
√

3/2 which allowed a simpler ap-
proach.

For an arbitrary line l with polar angle θ ∈ [0, π], we denote by r(θ) the
length of the projection of the polygon on the line l. There is a well known

formula for the perimeter, P =

∫ π

0

r(θ)dθ. Since r(θ) ≤ 1, ∀θ ∈ [0, π], we get

that P ≤ π, and by the isoperimetric inequality we get that the area of our
polygon is at most π/4.

3. Shortest curve which divides an equilateral triangle in two
regions of equal areas.

One would try to guess this curve as being a straight line, but the answer is
more trickier. First note that the curve must be simple. Suppose without loss
of generality that the area of the triangle is equal to 1. There are three possible
situations: (1) the curve has both its endpoints on the same side of the triangle;
(2) the curve has its endpoints on two different sides of the triangle; (3) the
curve is closed and inside the triangle.

Start with (3) which is the most immediate. By isoperimetric inequality, the
shortest curve which encloses 1/2. This means that L2 ≥ 2π, and the shortest
curve is in this case of length L =

√
2π.

Case (1). Denote XY Z our equilateral triangle and suppose that A,B, the
endpoints of our curve lie on XY . Take the symmetric of the triangle XY Z
about the line XY and get a triangle XY Z ′. The two symmetric arcs which
have endpoints in A,B enclose an area of 1 (two halves), and therefore, by the
isoperimetric inequality (2L)2 ≥ 4π, which means that the shortest curve in this
case has length

√
π.

Case (2). Denote again by XY Z the triangle and suppose that the endpoints
A,B are on two different sides. In this case one symmetrization isn’t enough.
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Figure 3:

We take symmetries in order to get a regular hexagon as in the figure. Then the
area enclosed by the 6 copies of our curve is 6/2 = 3, and by the isoperimetric
inequality, (6L)2 ≥ 12π, which means L2 ≥ π/3 and finally the minimum length
is equal to L =

√
π/3.

The last one is obviously the smallest length.

4 Conclusions

This article caught just a glimpse into the domain of isoperimetric inequalities
and shape optimization. This domain is in continuous expansion and has many
practical applications. I hope that the presented facts were interesting and the
reader will be motivated to learn more about the facts presented.
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