## IMC 2017 – Day 2 – Problems

**Problem 6.** Let be a continuous function such that exists (finite or infinite).

Prove that

**Problem 7.** Let be a nonconstant polynomial with real coefficients. For every positive integer let

Prove that there are only finitely many numbers such that all roots of are real.

**Problem 8.** Define the sequence of matrices by the following recurrence

where is the identity matrix.

Prove that has distinct integer eigenvalues with multiplicities , respectively.

**Problem 9.** Define the sequence of continuously differentiable functions by the following recurrence

Show that exists for every and determine the limit function.

**Problem 10.** Let be an equilateral triangle in the plane. Prove that for every there exists an with the following property: If is a positive integer and are non-overlapping triangles inside such that each of them is homothetic to with a negative ratio and

then

## Balkan Mathematical Olympiad 2017 – Problems

**Problem 1.** Find all ordered pairs of positive integers such that:

**Problem 2.** Consider an acute-angled triangle with and let be its circumscribed circle. Let and be the tangents to the circle at points and , respectively, and let be their intersection. The straight line passing through the point and parallel to intersects in point . The straight line passing through the point and parallel to intersects in point . The circumcircle of the triangle intersects in , where is located between and . The circumcircle of the triangle intersects the line (or its extension) in , where is located between and .

Prove that , , and are concurrent.

**Problem 3.** Let denote the set of positive integers. Find all functions such that

for all

**Problem 4.** On a circular table sit students. First, each student has just one candy. At each step, each student chooses one of the following actions:

- (A) Gives a candy to the student sitting on his left or to the student sitting on his right.
- (B) Separates all its candies in two, possibly empty, sets and gives one set to the student sitting on his left and the other to the student sitting on his right.

At each step, students perform the actions they have chosen at the same time. A distribution of candy is called legitimate if it can occur after a finite number of steps. Find the number of legitimate distributions.

(Two distributions are different if there is a student who has a different number of candy in each of these distributions.)

Source: AoPS

## Some of the easy Putnam 2016 Problems

Here are a few of the problems of the Putnam 2016 contest. I choose to only list problems which I managed to solve. Most of them are pretty straightforward, so maybe the solutions posted here may be very similar to the official ones. You can find a complete list of the problems on other sites, for example here.

**A1.** Find the smallest integer such that for every polynomial with integer coefficients and every integer , the number

that is the -th derivative of evaluated at , is divisible by .

**Hints.** Successive derivatives give rise to terms containing products of consecutive numbers. The product of consecutive numbers is divisible by . Find the smallest number such that . Prove that does not work by choosing . Prove that works by working only on monomials…

## IMC 2016 – Day 2 – Problem 8

**Problem 8.** Let be a positive integer and denote by the ring of integers modulo . Suppose that there exists a function satisfying the following three properties:

- (i) ,
- (ii) ,
- (iii) for all .

Prove that modulo .

## IMC 2016 – Day 2 – Problem 6

**Problem 6.** Let be a sequence of positive real numbers satisfying . Prove that

## IMC 2016 Problems – Day 2

**Problem 6.** Let be a sequence of positive real numbers satisfying . Prove that

**Problem 7.** Today, Ivan the Confessor prefers continuous functions satisfying for all . Fin the minimum of over all preferred functions.

**Problem 8.** Let be a positive integer and denote by the ring of integers modulo . Suppose that there exists a function satisfying the following three properties:

- (i) ,
- (ii) ,
- (iii) for all .

Prove that modulo .

**Problem 9.** Let be a positive integer. For each nonnegative integer let be the number of solutions of the inequality . Prove that for every we have .

**Problem 10.** Let be a complex matrix whose eigenvalues have absolute value at most . Prove that

(Here for every matrix and for every complex vector .)

Official source and more infos here.

## IMC 2016 – Day 1 – Problem 3

**Problem 3.** Let be a positive integer. Also let and be reap numbers such that for . Prove that