IMC 2016 – Day 2 – Problem 8

July 28, 2016 Leave a comment

Problem 8. Let {n} be a positive integer and denote by {\Bbb{Z}_n} the ring of integers modulo {n}. Suppose that there exists a function {f:\Bbb{Z}_n \rightarrow \Bbb{Z}_n} satisfying the following three properties:

  • (i) {f(x) \neq x},
  • (ii) {f(x) = f(f(x))},
  • (iii) {f(f(f(x+1)+1)+1) = x} for all {x \in \Bbb{Z}_n}.

Prove that {n \equiv 2} modulo {4}.

Read more…

IMC 2016 – Day 2 – Problem 7

July 28, 2016 Leave a comment

Problem 7. Today, Ivan the Confessor prefers continuous functions {f:[0,1]\rightarrow \Bbb{R}} satisfying {f(x)+f(y) \geq |x-y|} for all {x,y \in [0,1]}. Fin the minimum of {\int_0^1 f} over all preferred functions.

Read more…

IMC 2016 – Day 2 – Problem 6

July 28, 2016 1 comment

Problem 6. Let {(x_1,x_2,...)} be a sequence of positive real numbers satisfying {\displaystyle \sum_{n=1}^\infty \frac{x_n}{2n-1}=1}. Prove that

\displaystyle \sum_{k=1}^\infty \sum_{n=1}^k \frac{x_n}{k^2} \leq 2.

Read more…

IMC 2016 Problems – Day 2

July 28, 2016 Leave a comment

Problem 6. Let {(x_1,x_2,...)} be a sequence of positive real numbers satisfying {\displaystyle \sum_{n=1}^\infty \frac{x_n}{2n-1}=1}. Prove that

\displaystyle \sum_{k=1}^\infty \sum_{n=1}^k \frac{x_n}{k^2} \leq 2.

Problem 7. Today, Ivan the Confessor prefers continuous functions {f:[0,1]\rightarrow \Bbb{R}} satisfying {f(x)+f(y) \geq |x-y|} for all {x,y \in [0,1]}. Fin the minimum of {\int_0^1 f} over all preferred functions.

Problem 8. Let {n} be a positive integer and denote by {\Bbb{Z}_n} the ring of integers modulo {n}. Suppose that there exists a function {f:\Bbb{Z}_n \rightarrow \Bbb{Z}_n} satisfying the following three properties:

  • (i) {f(x) \neq x},
  • (ii) {f(f(x))=x},
  • (iii) {f(f(f(x+1)+1)+1) = x} for all {x \in \Bbb{Z}_n}.

Prove that {n \equiv 2} modulo {4}.

Problem 9. Let {k} be a positive integer. For each nonnegative integer {n} let {f(n)} be the number of solutions {(x_1,...,x_k) \in \Bbb{Z}^k} of the inequality {|x_1|+...+|x_k| \leq n}. Prove that for every {n \geq 1} we have {f(n-1)f(n+1) \leq f(n)^2}.

Problem 10. Let {A} be a {n \times n} complex matrix whose eigenvalues have absolute value at most {1}. Prove that

\displaystyle \|A^n\| \leq \frac{n}{\ln 2} \|A\|^{n-1}.

(Here {\|B\| = \sup_{\|x\|\leq 1} \|Bx\|} for every {n \times n} matrix {B} and {\|x\| = \sqrt{\sum_{i=1}^n |x_i|^2 }} for every complex vector {x \in \Bbb{C}^n}.)

Official source and more infos here.

Categories: Olympiad, Uncategorized Tags: , ,

IMC 2016 – Day 1 – Problem 2

July 27, 2016 Leave a comment

Problem 2. Let {k} and {n} be positive integers. A sequence {(A_1,...,A_k)} of {n\times n} matrices is preferred by Ivan the Confessor if {A_i^2 \neq 0} for {1\leq i \leq k}, but {A_iA_j = 0} for {1\leq i,j \leq k} with {i \neq j}. Show that if {k \leq n} in al preferred sequences and give an example of a preferred sequence with {k=n} for each {n}.

Read more…

IMC 2016 – Day 1 – Problem 3

July 27, 2016 Leave a comment

Problem 3. Let {n} be a positive integer. Also let {a_1,a_2,...,a_n} and {b_1,b_2,...,b_n} be reap numbers such that {a_i+b_i >0} for {i = 1,2,...,n}. Prove that

\displaystyle \sum_{i=1}^n \frac{a_ib_i -b_i^2}{a_i+b_i} \leq \frac{\sum_{i=1}^n a_i \cdot \sum_{i=1}^n b_i - \left(\sum_{i=1}^n b_i \right)^2 }{\sum_{i=1}^n (a_i+b_i)}.

Read more…

IMC 2016 – Day 1 – Problem 1

July 27, 2016 Leave a comment

Problem 1. Let {f:[a,b] \rightarrow \Bbb{R}} be continuous on {[a,b]} and differentiable on {(a,b)}. Suppose that {f} has infinitely many zeros, but there is no {x \in (a,b)} with {f(x)=f'(x) = 0}.

  • (a) Prove that {f(a)f(b)=0}.
  • (b) Give an example of such a function.

Read more…

Follow

Get every new post delivered to your Inbox.

Join 408 other followers

%d bloggers like this: